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1. INTRODUCTION AND NOTATIONS

In this paper, we consider the following generalized rational approx­
imation problem. Let C(B) be the Banach space of continuous real-valued
functions on some compact subset B of the Euclidean plane IR I, which is
equipped with the Chebyshev norm 11/11= sup{l/(t); t = (x, y) E B} for all
IE C(B). If U and V denote two finite-dimensional subspaces of C(B), the
approximating family is given by

G = {g = u/v; u E U, v E V with v(t) > 0 for all t E B}. (1)

When G is nonempty, the problem is to approximate IE C(B)\G by
elements of G to reach the minimal distance p(j, G) = inf{1I1 - gil; g E G}.

For general nonlinear families, Collatz [5] defined an H-set as a subset M
of B which verifies hypothesis H: there is a partition M 1 U M I of M such
that no pair g!' gl E G satisfies gl - gl >0 in M 1 and gJ - gl < 0 in MI'

An H-set is said to be minimal if it does not include any proper subset which
is an H-set. The notion of H-set is important for obtaining bounds on the
minimal distance, through the inclusion theorem: given gE G whose error
1- g is positive on M 1 and negative on M I , or vice versa, the following
inclusion holds:

inf I/(t) - g(t)1 ~ p(j, G) ~ III - gil.
tEM

(2)

For testing hypothesis H by the family (1), the difference of any two
elements gJ = U1/V 1 and g2 = UI/V I of G has the same sign in B as
U JVI - u2V!' due to the fact that both denominators are positive. Therefore,
when U and V are spaces of two-variable polynomials of total degrees f.J and
v, respectively,
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U=P/l= l:L aijXiyf;aijEIRI, dimU=(p+l}(p+2}/2,
i+j'/l \

v = P v = 1:L bijxiyf; bij E IR I, dim V = (v + l}(v + 2}/2,
i+j,v \

Collatz [5, 6] identifies ll-sets with those for linear approximation by the
space P/l+v' which have been investigated in several papers (see, for instance,
[1,5,6,8, 11, l3-l6]).

If the bounds coincide in (2), g is a minimal solution. Whence, in linear
approximation problems, ll-sets play a central role in characterization
theorems. On the contrary, in the rational case, one gets only a sufficient
optimality condition, because the definition of ll-set is too general for
purpose of proving the inclusion theorem. In fact, one has to check
hypothesis II only for g- g, where g is the given element of G while g is
arbitrary. This observation motivates a more restricted definition of H-set

DEFINITION 1. A subset M = M 1 U M 2 of B with M, n M 2 = 0, is an H­
set relative to a fixed g E G if there is no g E G which satisfies g - g > 0 in
M, and g - g <0 in M 2'

For rational funCtions (1), the definition amounts to saying that no
element of the linear space W = au +av is positive in M 1 and negative in
M 2 or vice versa. By standard arguments [8], one gets a dual equivalent
definition: M = {t l' t2 ,.", tm + If c B is an ll-set relative to g if one has

m+ ,:L ..1.(t;) w(t;) = 0,
i=1

L 1..1.(t;)1 >0, wE W = au + avo (3)

In this setting, ll-sets are equivalent to extremal signatures introduced in [2]
for rational approximation. With this more accurate definition of ll-sets,
identical lower and upper bounds in (2) yield the Kolmogorov charac­
terization theorem [4, p. 159].

KOLMOGOROV THEOREM. The element g EGis a best approximation off
iff no wE W = au +av has the same sign as f - g on the extremal point set
E(g} = {t E B; If(t} - g(t}1 = Ilf - gil}.

We shall thus investigate ll-sets for linear approximation by the space
W = au +av, where U = P/l and V = P v while a and a are fixed
polynomials of degrees at most equal to f.J. and v, respectively.
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2. DIMENSION OF THE SPACE W

We assume that g is expressed in an irreducible form, i.e., aand vdo not
have a common factor. If g= 0, we adopt the convention a= 0, v= I so that
W = Piland all H-sets correspond to the classical linear theory. For g=t- 0,
we define the defect of g by fJ = min{,u - P, v - v}, where P and vdenote the
actual degrees of a and v. Hence, we have W <;; PIl +v-~. With the kind of
argument used in the univariate case [4, p. 162], we prove

THEOREM 1. For g=t- 0, the dimension of W = vU +av is given by

dim W = dim PIl+V-~ - (p - fJ)(v - fJ). (4)

By the modular law for the sum of spaces, we get dim W = dim(vU) +
dim(aV) - dim {(vU) n (uV)} in which dim(vU) = dim Piland dim(uV) =
dimPv • On the other hand, any element w of (vU)n (uV) satisfies
w = vu = uv with u E U and v E V. As u and v are prime polynomials, v
divides v, i.e., v = qv, which implies u = qu. Whence, the degree of the
polynomial q equals the defect fJ and we have

dim W = dim P11. + dim P v - dim P~ (5)

or dim W = (p + I)(P + 2)/2 + (v + I )(v + 2)/2 - (fJ + I )(fJ + 2)/2. By some
algebraic manipulations, this last expression can be rewritten as dim W =

(p +v - fJ + I)(P + v - fJ + 2/2 - (p - fJ)(v - fJ). I
Actually, result (5) does not depend on the number of variables. If we

apply it to univariate polynomials which are characterized by
dim P n = n + I, we get dim W = dim PIl+V-~ and W = PIl+V-~. Therefore,
any minimal H-set consists of 11 + v - fJ + 2 points with alternating signs. In
this way, we rediscover the classical alternation property of univariate
rational approximation [4, p. 1631.

On the contrary, for two-variable functions, if (p - fJ)(v - fJ) is nonzero,
W is a proper subset of PIl+V-~. This peculiarity can be explained by a
fundamental theorem of algebraic geometry, which is due to Noether.

3. NoETHER THEOREM

The Noether theorem [9] provides necessary and sufficient conditions for
a bivariate polynomial to belong to the space W= vU + avo They concern
the behaviour of w at each intersection point of the two algebraic plane
curves defined by u(x, y) = 0 and v(x, y) = O.
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NOETHER THEOREM. A polynomial w can be written as vu +uv in which
u and v denote given polynomials having no common factors, while u and v
are arbitrary iff the Noether condition is fulfilled at each intersection point
q; = (x;, y;) of the two basic curves u = 0 and v = 0: there exists a pair of
polynomials up Vi such that the difference w - vU; - uv; expanded in powers
of x - x;, Y - Yi' starts with terms of degree at least equal to a number p;
called the Noether exponent at q;.

Since the curves u= 0 and v= 0 have no common part, due to Bezout
theorem [7, p. 10], they have exactly (p - 8)(v - 8) intersection points
provided all points at infinity are taken into account. For instance, if fJ. = I
and v = 2, the rational function g= 1/(xZ

- yZ +x) has a zero defect and we
compute the two intersection points by expressing g as a quotient of two
homogeneous polynomials Z/(XZ

- yZ +XZ): this gives the points at
infinity Xl = 1, YI = 1, ZI = 0 and X z = I, Yz = -1, Zz = O. By (4), all
conditions arising from the (p - b)(v - 0) intersection points are
independent.

The Noether exponent can be characterized in terms of geometrical
properties of the two curves u= 0 and v= 0 at their intersection points [9].
For the sake of simplicity, we consider an intersection point at the origin,
i.e., q = (0,0), which is of order (J on U= 0 and of order r on v= 0

u(x, y) = L u;(x, y),
i>u

v(x, y) = L vi(x, y),
i;;n

where u; and V; are homogeneous polynomials of degree i in x and y. The
first nonzero polynomials Uu and v

T
define the various tangents at the origin

u

uu(1, a) =K u n (a - a;),
;=1

T

vT(I,fJ)=Kv n (fJ-fJJ
;=1

The multiplicity K of the intersection point q is at least (Jr. Equality occurs itT
the two curves have no contact at q, i.e., a; 1= fJj for i = 1,2,..., (J and
j = 1,2,..., r. We can then state

PROPOSITION I ([9]). The Noether exponent p is bounded as

p ~ K - «(J - 1)(r - I), (6)

and it reaches its upper bound iff the curves u = 0 and V=0 have at most
one common tangent which is simple for at least one of them.

Two particular examples where equality holds in (6) will be examined in
the next sections. First, if q is an ordinary point on u= 0, i.e., (J = 1, one has
p = K. Second, if u= 0 and v= 0 have no contact at q, one gets K = (Jr and
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p = a + r - 1. For the general case of singular points, i.e., a, r> 1, with
some common tangents, a few partial results are known [9] but a complete
treatment has not been given.

4. ORDINARY INTERSECTION POINTS

As pointed out in the last section, if the intersection point is ordinary on
one basic curve, its multiplicity is identical to the Noether exponent. In that
case, the Noether condition can take a more geometrical form [I2].

THEOREM 2. When a= 0 and v= 0 contain an intersection point q of
multiplicity K, which is ordinary on a= 0, the polynomial w satisfies the
Noether condition at q iff the curves a= 0 and w = 0 have at q an inter­
section point of multiplicity at least equal to K.

For simple intersection points q, we have K = a = r = 1 and the Noether
condition only requires that the curve passes through q. Whence, if we
consider a rational function g= a/v, having zero defect with no loss of
generality, such that a= 0 and v= 0 intersect only in points of multiplicity
one, investigating H-sets for W amounts to characterizing H-sets for
polynomials of degree !J + v, which vanish at !JV distinct points, Le.,
W = {w E Pr ; w(qj) = 0 for j = 1,2,..., I}, where we set !J + v = rand !JV = I
for convenience. The zeros qj are all located outside B since v is positive
inB.

In order to solve such linear approximation problems with side inter­
polation conditions, we can exploit the notion of support which was
introduced by Carasso and Laurent [3] in connection with a generalized
exchange algorithm. To this end, we denote by ¢(t) = [Ix· .. yr]T E IR n

,

where n = (r + l)(r + 2)/2, the characteristic vector associated with P r , and
by 1= span{¢(ql)' ¢(q2)'"'' ¢(q/)} with dim I = I, the space coresponding to
the interpolation conditions.

DEFINITION 2. A set S = {t l' t2"'" tm +It is termed a support of I if there
exist coefficients A(ta, not all zero, such that L:r=+11 A(t/) ¢(t;) E lor,
equivalently,

m+1 /

L A(t/) ¢(t/) = L !J(qj) ¢(qj),
;=1 j=1

(7)

The support is minimal when S\{tj } is not a support of I for
j = 1,2,..., m + 1.

One readily obtains [3] a characterization of minimal supports and, at the
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same time, of minimal H-sets which, in view of (3), are supports of the null
space.

PROPOSITION 2. The support S is minimal iff all coefficients A(tJ are
nonzero and the dimension of the space spanned by ?(t1),..., ?(tm + I)'
?(ql)"'" ?(qt), is m + I.

The link between supports and H-sets relative to approximation problems
with interpolation conditions is indicated in

THEOREM 3. The set S= {tl't2,... ,tm + l } is an H-set for W iff it is a
support of I for Pr'

Proof. Sufficient condition. For a support S of I, we have (7) which can
be written in the form

m+l t

L A(t;) w(t;) = L p(qj) w(qj),
1=1 j=1

L IA(tJI >0, wE Pro
1

As wE W ~ Pr satisfies w(qj) =° for j = 1, 2,..., I, we get
L~=+/ A(t;) w(tJ =°for all wE Wand, by (3), S is an H-set for W.

Necessary condition. We first compute the characteristic vector
associated with W. Any w = ? Ta E Pr with a E IR n belongs to W if it
vanishes at ql' q2"" qt or, equivalently, if La = 0, where the matrix
L = [?(ql)?(q2) ... ?(qt)]T has rank I. Assuming its last I columns to be
independent and partitioning L, a and? accordingly,

we get at = -Lt-ILn_tan_t so that any wE W is given by w = 'liTan- t in
which 'II is the characteristic vector relative to W.

From the identity

the n-dimensional vector XT = ['liTO] is given by

t

X(t) = ?(t) - L ?(qj) xit ),
j=1

(8)



362 THIRAN, DEFERT, AND PANIER

Now, if S is an H-set for W, we have I:~=+II A(ti) lIf(ti) = 0 or
I:~=+ll A(tJ X(ti) = 0 with I: IA(tJI > O. Using (8), we get (7) in which

m+1
p(qj) = L A(ti) xj(ti)· I

i=1

We easily deduce a more precise statement about minimal H-sets and
minimal supports.

COROLLARY 1. The set S is a minimal H-set for W iff it is a minimal
support of I for Pr'

We can then characterize minimal supports as

THEOREM 4. The set S = {t1 , t2"'" tm+ I} is a minimal support of I for Pr

iff there is an index h with 0::;;; h ::;;; I such that two conditions are fulfilled:

(1) {t ..... , tm+d U {ql"'" qh} is a minimal H-setfor Pro

(2) {qh+ 1"'" qtl is not a support of the space spanned by
~(tl)'"'' ~(tm+I)' ~(ql)'"'' ~(qh)' with respect to Pro

Proof Necessary condition. In view of Proposition 2, for a minimal
support {tl' t2'"'' tm+d of I, we can write (7) with all nonzero coefficients
A(ti). As the space spanned by ~(tl)'"'' ~(tm+ I)' ~(ql)'"'' ~(ql)' has dimension
m + I, we can delete any vector ~(ti) to get a set of m + I independent
vectors. In (7), we suppose, with no loss of generality, that p(qj) 1= 0 for
O::;;;j::;;;h andp(qj)=O for h <j::;;;/. In this way, tl,...,tm+l,ql,...,qh form a
minimal H-set relative to Pro Further, since the coefficients of (7) are unique
within a common factor, the coefficients of ~(qh+ I)"'" ~(ql) are necessarily
zero and one has condition (2).

Sufficient condition. Condition (1) implies

m+1 h
L A(ti) ~(ti) = L p(qj) ~(qj)'
i~l j=1

(9)

where all coefficients A(tJ and p(qj) are nonzero. On the other hand, the
space spanned by ~(tl)'"'' ~(tm+ I)' ~(ql)'"'' ~(qh) has dimension m + hand
any subset of m + h vectors consists of independent vectors. We can identify
(9) with (7) by letting p(qj) = 0 for j> h. Moreover, the vectors
~(tl)"'" ~(tm)' ~(ql)'"'' ~(ql) are independent. Otherwise, the relationship

m h I

L X(tl) ~(ti) + L X(qj) ~(qj) + L p(qj) ~(q} = 0
i=1 j=1 j=h+1



r m+ 1 C

2 4 C,
6 C2
7

3 5 C1

8 C2
9

10 CJ

11

H-SETS

TABLE I

D

cj')nCj2)

Q

C,
C2

C,I)nc(2)
3 3

CJ

1R 2

363

can be satisfied with at least one nonzero P(qj) since the vectors involved in
the first two sums are independent. This contradicts condition (2). I

By Theorem 4(1), we have to know minimal H-sets relative to Pro In [16],
a general classification of minimal H-sets with respect to bivariate
polynomials is based on the following argument. If a minimal H-set is
composed of m + 1 points, m is at most equal to n. When m < n, the m + 1
points lie on n - m independent algebraic plane curves of order r, denoted by
e(l), e(2),... , e(n-m). The algebraic variety nr:;n e(i) is the set Q of points
whose characteristic vector belongs to the space spanned by those evaluated
at the points of the H-set. In general, the n - m curves have a factorization
er(i), i = 1, 2,..., n - m, in which e is their common part while
rl),...,r n - m ) have no common factor. Hence, Q is the union of e and of a
set D of isolated points located on the curves ri). If m = n, the points of the
minimal H-set do not lie on any curve of order r and the set Q is actually the
whole plane IR 2. For example, all minimal H-sets relative to degrees 2 and 3
are listed in Table I, where ek stands for a curve of order k.

As an illustration of the foregoing developments, we consider H-sets on
the cubic y = x 3

• On that curve, third degree polynomials are spanned by the
nine basic functions Xi with 0 ~ i *" 8 ~ 9. In order to compute the deter­
minant of [~(x)) ~(X2) ... ~(X9)]' where ~ is the corresponding characteristic
vector, we set y = x9 to transform the determinant into a ninth degree
polynomial in y, which can be written in the form

8n (Xi - Xj) n (y - xi)(y - a).
i>j i=)
*9

Imposing that the polynomial has no term in y8 yields a = - L~= I Xi so that

det[~(xl) ~(X2) ... ~(X9)] = n (Xi - X) LXi'
i>j i

(10)
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Consequently, taking XI <X 2< ... <x lO such that L.;*j Xi *' 0 for all j, we
get a minimal H-set composed of ten points, whose associated variety Q is
the whole cubic y = x 3

• From (10), we easily show that the ten points have
alternating signs except for those enclosing the point defined by L.:~ I x" On
the contrary, for L.r= 1 Xi = 0, we get nine isolated points which are given by
the full intersection of y = x 3 with another independent cubic: there is no
other point in the variety Q. If we are interested only in knowing the isolated
points, we can replace the computation of the determinant by a more direct
approach. Let p(x) be a ninth degree polynomial having no term in x 8

, which
vanishes at nine distinct points xl'x2"",x9 , It is given by KOr=1 (x-x,)
and the interpolation conditions are dependent iff one can find a nonzero
constant K. As the coefficient of x 8 is -K L.r= 1 xi' this implies L.r= 1 XI = O.

Suppose we have a minimal H-set for P" which contains some points of
B, tl' t2>"" tm+l' and some intersection points ql' q2'"'' qh with 0 ~ h ~ l. To
check Theorem 4(2), we define for k = h,..., 1- 1, the spaces Tk spanned by
?(t l ),···, ?(tm+ I)' ?(ql)"'" ?(qk) and the varieties Qk = {t E 1R 2; ?(t) E Tk!.

THEOREM 5. Theorem 4(2) is fulfilled, i.e., {qh+1"'" q,} does not form a
support of Th, iff qk+ I does not belong to Qkfor k = h, h + 1,...,1- 1.

Proof Necessary condition. If qk+ 1 E Qk for some h ~ k < I, one has

m+1 k

?(qk+ I) = 2.: A(t;) ?(ti ) + 2: A(q)) ?(qj)
i=1 j=1

or L.)=h+ I A(qj) ?(qj) E Th with A(qk+ I) = -1 and A(qj) = 0 for j> k + 1.
Since A(qk+ I) is nonzero, the set {qh+ 1"'" q,} is a support of Th.

Sufficient condition. A support {qh+ p ... , qd of Th implies

, m+ 1 h

L /1(qj) ?(qj) = L A(t;) ?(t i ) + L A(qj) ?(qj)
j=h+1 ;=1 j=l

with at least one nonzero coefficient /1(qj)' If k + 1 denotes the highest index
of a nonzero /1(qj)' one obviously gets qk+ 1 E Qk' I

We illustrate the criterion by choosing /1 = 1, v= 2 with a couple of
distinct intersection points ql' q2' For example, we start from a minimal H­
set relative to r = 3, which is composed of ten points t; = (xi' Yi)'
i = 1,2,..., 10, on the cubic C3 defined by Y = x 3

, with L.Ni xj *' 0 for all i. If
the H-set includes neither ql nor q2' we get Qo = C3 and ql must be located
outside C3 • Hence, the second variety is QI = 1R 2 so that q2 necessarily
belongs to QI: the ten points tl' t2 , ... , tlO do not form a minimal H-set with
respect to W. On the contrary, if L.r= I Xi = 0, the points tl' t2, , t9 belong to
C3 and to another independent cubic r3 • One has Qo= {tl't2, ,t9 } so that
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TABLE II

Ii v m+i Curves Intersection Points

3 C, q, EC,
4 C, q, E C,
5 C, q, E C,
6 C, q, EC,
6

2 3 C, q" q,E C,
4 C, q,EC"q,EC,
5 C, q" q,E C,
6 C, q" q,EC,
7 C, q, E C" q, E c,
8 C, q" q,E c,
7 CI') n cm q" q, E c\l)n C\"J J

8 C\" n Cj" q, E Cjl) n C\'l, q, E C\I) n C\"
9 Cjl)n Cj" q" q, E C\I) n c\"
8 CJ q" q,E C,
9 CJ q, E C" q, E c,
9 CJ q"q,EC,

ql may be everywhere in the plane. Any ql will define one given cubic from
the pencil aC3 +br3 • Consequently, the nine points t I' t 2 , ... , tg build a
minimal H-set for W provided q2 does not lie on the unique cubic obtained
by adding ql to the minimal-set.

Proceeding as above, we deduce from Table I the various minimal H-sets
relative to rational functions characterized by f.J. = 1, v = 1 and f.J. = 1, v = 2.
They are listed in Table II which a based on zero defect and distinct inter­
section points. The first three H-sets for f.J. = 1, v = 2 are illustrated in Fig. 1.
It must be emphasized that the intersection points may have complex or
infinite values as shown in Figs. 2 and 3.

The foregoing developments hold true when some intersection points have
multiplicity greater than one. An example is given in Fig. 4 for
g= y/(x2

- y) such that Theorem 2 imposes the conditions w(O, 0) =
wx<O,O)=O for all wE WCP3' As only peculiarity, the points of the H-set
may lie on curves which satisfy wx(O, 0) =°without passing through the
origin. For instance, on the cubic y = x 3 + 1, W is the space of ninth degree
polynomials

9

p(x) = 2.: a;x;,
;=0

(11)

As dim W = 8, any minimal H-set is, in general, composed of nine points
except for special set of isolated points x l' X 2 , ••• , X s which can be computed
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by the previously mentioned method. The interpolation conditions p(x;) = 0,
i = 1, 2,..., 8, yield

S

p(x) = K n (x - xi)(x - a).
i= 1

(12)

S _ S iHence, introducing Tli= 1 (x - x;) - 22i=O bix and identifying (12) with
(II), we get

For any set A = {XI' x2 , ••• , x7 }, this relationship provides a second degree
equation in xS ' For instance, A = {-3, -2, -1,0, 1,2,3} gives x~l) = (0.4)1/2
and X~2) = _(0.4)1/2. The set A U {x~l)} corresponds to the minimal H-set of
eight isolated points reported in Table II but, in this case, there remains one
more point defined by X~2) in the associated variety.

5. SINGULAR INTERSECTION POINTS

As shown at the end of Section 3, when the basic curves a= 0 and v= 0
have no contact at an intersection point q of order a on a= 0 and of order r
on v= 0, the Noether exponent is p = a + r - 1. Whence, by taking the
particular polynomials ui = Vi = 0 in the statement of Noether Theorem, we
find the following well-known result [9]:

THEOREM 6. If a = 0 and v = 0 have no contact at their intersection
point q, the polynomial w satisfies the Noether condition at q if q is a point of
order a + r - 1 on w = O.

We easily verify that this condition is only sufficient if q is singular on
both curves. For instance, when a = r = 2, the Noether condition is satisfied
itT there exist polynomials U and v such that q is a point of order three on
w = av + vu. This gives the four conditions w = wx = wy = 0 and

Uxx
6" )UXY ~Xy = 0,

ayy V yy

where all polynomials are evaluated at q. As we need necessary conditions
for investigating H-sets, we can replace Theorem 6 by Proposition 3 which
assumes a ~ r.

PROPOSITION 3. The polynomial w satisfies the Noether condition at q
only if q is a point of w = 0, which is of order at least equal to a.
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If minimal H-sets relative to bivariate polynomials include some singular
point of order 0, the analysis performed in [16] still holds when the points of
the H-set lie on one single curve. One has only to take into account the
0(0 + 1)/2 conditions imposed by q. On the contrary, if the H-set belongs to
several curves having no common part, the analysis fails because q produces
0

2 intersection points. As one has 0(0 + 1)/2 = 0
2 only for 0=1, the

approach of [16] must be generalized. To this end, we consider minimal H­
sets relative to P" which contain a fixed number M of singular points
q., q 2"'" qM of order °1 , °2 , ... , OM' in addition to some ordinary points
t., t 2,..., tm+ l . We first assume that they lie on two curves C~I), C~2) without
common part. Due to the Bezout theorem, we get

where each t i is supposed to be ordinary and H ~ m + 1 is given by

M

H = r 2- '\' 0;.
I = I

(13)

(14)

The subset of (13) which yields independent conditions is q1"'" q"" t1"'" t p

with

M

L 0i(Oi + 1)/2 +P= (r + 1)(r + 2)/2 - 2.
i~1

(15)

The remaining points tp +" ..., tH are said to be superabundant of superabun­
dance s = 2:7=1 0i(Oi + 1)/2 + H - (r + 1)(r + 2)/2 or, by (14), s =
(r-l)(r-2)/2-2:7=loi(oi-1)/2. For M=O, the set (13) is
superabundant as soon as r = 3 [16]. If there is some singular point, it is
superabundant only for r ~ 4. For rational functions with fJ. = v = 2, such
that u= 0 and v= 0 intersect in q 1 with °1 = r I = 2, we get s = 2 and
H = 12. Hence, the minimal H-set, which has superabundance one, is
composed of q" t., t 2"'" t II and there is one more point t 12 in the associated
variety.

In order to find minimal H-sets belonging to several curves C~i)

(i = 1,2,...,2 + b; b >0) with no common part, we shall determine from
intersection set (13) related to the first curves, a superabundant subset
ql ,..., qM' t l ,..., tp-b+s in which ql ,..., qM' t l ,..., tp_b provide independent
conditions. By [7, p. 385; 10], the superabundance s is the number of
independent curves of order r - 3 which contain q 1'"'' qM as points of order
0,-I,...,oM-1, and which pass through tp-b+s+I,...,tw This gives a
system of 2:7=1 0i(Oi - 1)/2 +H - P+b - s or, by (14) and (15),
(r - 1)(r - 2)/2 +b - s linear equations in (r - 1)(r - 2)/2 unknowns. Since
it has s independent solutions, its rank is equal to (r - 1)(r - 2)/2 - s so
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that b equations are superabundant. Hence, the set {q1"'" QM'

I p - b +s+1"'" IH }, where each qj is of order a j - 1, has superabundance b for
degree r - 3. The procedure described in [16] is still applicable. For
instance, with r = 4, M = 1, a 1 = 2, we start from a minimal superabundant
set for degree one, which is the minimal H-set composed of three collinear
points [16]. This gives b = s = 1 and a minimal H-set {Q1' t1''''' t lO } for
W £; P4' which belongs to three quartics. One may no longer add one more
point on the straight line to get b = 2, because it should be common to q 1

)

and C~2) in view of the Bezout theorem. In [16], we described minimal H­
sets for P4' which consist of twelve isolated points on four independent
quartics. In fact, they are given by the intersection of a cubic with a quartic.
For instance, on the parametrical cubic y2 = x3, i.e., x = Z2, Y = z3, P 4 is the
space of univariate polynomials p(z) = L:~o a,zj with a 1 = 0: the condition
L:~l zi 1 = 0 will thus produce twelve isolated points. If we now consider
f.i = v = 2, a= xy, (j = x 2+ y2, on y2 = x3, W is spanned by Z4, Z5, ... , Zl2 and
we cannot find any set of isolated points.
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